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Thalamic and Extrathalamic Mechanisms
of Consciousness after Severe Brain

Injury

Evan S. Lutkenhoff, PhD,1 Jeffrey Chiang, MA,1 Luaba Tshibanda, MD,2

Evelyn Kamau, MSc,3 Murielle Kirsch, MD,2,4 John D. Pickard, FMedSci,3
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Objective: What mechanisms underlie the loss and recovery of consciousness after severe brain injury? We sought to
establish, in the largest cohort of patients with disorders of consciousness (DOC) to date, the link between gold
standard clinical measures of awareness and wakefulness, and specific patterns of local brain pathology—thereby
possibly providing a mechanistic framework for patient diagnosis, prognosis, and treatment development.
Methods: Structural T1-weighted magnetic resonance images were collected, in a continuous sample of 143 severely
brain-injured patients with DOC (and 96 volunteers), across 2 tertiary expert centers. Brain atrophy in subcortical
regions (bilateral thalamus, basal ganglia, hippocampus, basal forebrain, and brainstem) was assessed across (1)
healthy volunteers and patients, (2) clinical entities (eg, vegetative state, minimally conscious state), (3) clinical meas-
ures of consciousness (Coma Recovery Scale–Revised), and (4) injury etiology.
Results: Compared to volunteers, patients exhibited significant atrophy across all structures (p< 0.05, corrected).
Strikingly, we found almost no significant differences across clinical entities. Nonetheless, the clinical measures of
awareness and wakefulness upon which differential diagnosis rely were systematically associated with tissue atrophy
within thalamic and basal ganglia nuclei, respectively; the basal forebrain was atrophied in proportion to patients’
response to sensory stimulation. In addition, nontraumatic injuries exhibited more extensive thalamic atrophy.
Interpretation: These findings provide, for the first time, a grounding in pathology for gold standard behavior-based
clinical measures of consciousness, and reframe our current models of DOC by stressing the different links tying tha-
lamic mechanisms to willful behavior and extrathalamic mechanisms to behavioral (and electrocortical) arousal.
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The mechanisms supporting consciousness, as well as

its loss and recovery after severe brain injury, remain

largely unknown. In the context of disorders of con-

sciousness (DOC)1 such as the vegetative state (VS) and

the minimally conscious state (MCS), the lack of a

mechanistic understanding of the relationship between

brain damage and neurological condition has direct con-

sequences for our ability to make accurate diagnoses,

prognoses, and to develop targeted interventions, thereby

raising complicated medical and ethical questions.2

Although information concerning the nature and extent

of a patient’s brain damage is generally taken into consid-

eration during clinical assessments, current differential

diagnosis procedures rely exclusively—as per international

guidelines—on behavioral presentation.3–5 Consequently,

although our understanding of DOC is continuously

increasing,6,7 little is known about the connection

between behaviorally defined clinical entities and the

underlying brain damage,8–10 or the degree to which

standard behavior-based clinical assessments (eg, JFK
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Coma Recovery Scale–Revised [CRS-R]4) systematically

reflect, or index, specific aspects of neural pathology.

In this work, we employ conventional T1-weighted

magnetic resonance imaging (MRI) in the largest multi-

center continuous sample of DOC patients to date, in an

effort to bridge the gap between clinical assessments of

consciousness and underlying brain damage. In particu-

lar, we attempt to determine a potential minimum com-

mon denominator across a characteristically

heterogeneous population that might relate standard clin-

ical measures of wakefulness and awareness to specific

patterns of subcortical atrophy, thereby providing a

mechanistic framework within which to understand loss

and recovery of consciousness after severe brain injury,

and to develop potential restorative interventions.

As described below, we report a systematic negative

association between a patient’s quantitative clinical meas-

ures of behavioral responsiveness and arousal, and the

degree of tissue atrophy within thalamus, basal ganglia, and

basal forebrain. These finding provide, for the first time, a

clear grounding in pathology for gold standard behavior-

based clinical measures of consciousness, and reframe our

current models of DOC by separating the thalamic contri-

bution to willful behavior from the extrathalamic contribu-

tion to behavioral (and electrocortical) arousal.

Subjects and Methods

Participants
In this cross-sectional study, we recruited a consecutive sample

of 143 patients who survived severe brain injury and developed

a disorder of consciousness. The sample includes all patients

who, between October 2006 and February 2013, underwent

structural (T1-weighted) MRI as part of a large multicenter

neuroimaging project conducted at the Wolfson Brain Imaging

Center, Addenbrooke’s Hospital, Cambridge, United Kingdom

and the Coma Science Group, University Hospital, University

of Liège, Liège, Belgium. The only exclusion criteria were

unsuitability for entering the magnetic resonance (MR) envi-

ronment (eg, any type of non–MR-safe implant) or any acute

medical condition making it unsafe for the patient to undergo

the procedure (a determination that was made by clinical per-

sonnel blinded to the aims of this study). Inclusion criteria

were adult patients with acquired severe acute brain injury lead-

ing to coma and a subsequent diagnosis of chronic (>4 weeks)

DOC (VS or MCS), or emerging from MCS (eMCS), at time

of study. As shown in Table 1, about half the patients suffered

from a traumatic brain injury, 47% suffered from nontraumatic

brain injury, and the remaining 3% suffered from a mixed eti-

ology. Almost half of the nontraumatic brain injuries (47%)

were due to anoxic or hypoxic events following cardiac or cardi-

orespiratory arrest (with only 2 cases reported of hypoglycemic

coma and carbon monoxide poisoning). The majority of non-

traumatic brain injuries (51%) were due to cardiovascular

events including both ischemic and hemorrhagic stroke. Finally,

1 patient presented with infection (rhombencephalitis).

As described in the data preprocessing section below, 28

patient data sets were discarded because of low image quality

(eg, in-scanner motion). Patient exclusion was agreed upon at

completion of the initial data preprocessing, prior to any data

analysis, and thus blind to the contribution of each of these

observations to the overall result. Of the remaining 115 patients

(61 from Cambridge and 54 from Liège), 38 met the diagnos-

tic criteria for VS (18 from Cambridge and 20 from Liège), as

evaluated with the CRS-R, 63 met the diagnostic criteria for

MCS (37 from Cambridge and 26 from Liège), and the 14

remaining met the criteria for eMCS (6 from Cambridge and 8

from Liège; see Table 1). Following the taxonomy recently

introduced by Bruno and colleagues, minimally conscious

patients were further divided into 27 MCS2 and 36 MCS1.11

TABLE 1. Sample Demographic and Groupwise Patient Clinical Information

Group Diagnosis Mean Age,
yr (SD)

Gender,
M/F

Mean NBV,
mm3 (SD)

Mean
MPI (SD)

Etiology,
T/NT

Median
CRS-R

HV,
n 5 96

NA 33.41 (17.65) 45/51 1,555,262 (134,231.7) NA NA/NA NA

Patients,
n 5 115

VS, n 5 38 48.73 (18.31) 23/15 1,374,257 (138,722.3) 06.41 (6.91) 15/23 5.5

MCS2, n 5 27 42.45 (16.31) 16/10a 1,394,288 (136,546.3) 13.02 (13.72) 18/09a 9.0

MCS1, n 5 36 43.35 (17.02) 25/11 1,350,815 (107,902.5) 21.62 (30.47) 23/12 11.0

eMCS, n 5 14 48.90 (19.57) 10/04 1,391,304 (96,092.88) 21.15 (23.76) 05/09 20.5b

aUnavailable for 1 patient.
bUnavailable for 2 patients.
CRS-R 5Coma Recovery Scale–Revised; eMCS 5 emerging from minimally conscious state; F 5 female; HV 5 healthy volunteers;
M 5 male; MCS 5 minimally conscious state; MPI 5 months postinjury; NA 5 not applicable; NBV 5 normalized brain volume;
NT 5 nontraumatic etiology; SD 5 standard deviation; T 5 traumatic etiology; VS 5 vegetative state.
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The study was approved by the Cambridge (UK) Local

Research Ethics Committee, and the Ethics Committee of the

Medical School of the University of Liège (Belgium). Signed

consent was obtained, according to the approved procedures at

each site, from each patient’s legal surrogate.

Control data were obtained for 96 healthy volunteers (51

female), ranging from 18 to 80 years of age (mean 5 33 years,

standard deviation 5 18 years), with no known history of brain

disorders (see Table 1). In accordance with the procedure

approved by the Cambridge and Liège local ethics research

committees, written informed consent was obtained for each

volunteer.

Procedures
Each patient and healthy volunteer underwent a conventional

structural T1-weighted 3-dimensional magnetic-preparation rapid

gradient echo scan. Patient data were acquired on identical 3T

Siemens (Erlangen, Germany) Tim Trio systems at the Wolfson

Brain Imaging Centre at Addenbrooke’s Hospital (repetition time

[TR] 5 2.30 milliseconds, echo time [TE] 5 2.99 milliseconds,

flip angle [FA] 5 98, resolution 5 1 3 1 3 1mm) and at the

University Hospital at University of Liège (TR 5 2.30 millisec-

onds, TE 5 2.47 milliseconds, FA 5 98, resolution 5 1 3 1 3

1.2mm). Volunteer data were also acquired on a 3T Siemens

Tim Trio system, at the MRC Cognition and Brain Sciences

Unit, Cambridge, United Kingdom (TR 5 2.30 milliseconds,

TE 5 2.99 milliseconds, FA 5 98, resolution 5 1 3 1 3 1mm).

Data Preprocessing
To assess local brain atrophy on the basis of T1-weighted MR

images, we employed a technique referred to as "shape (or ver-

tex) analysis,"12 available in FMRIB Software Library (FSL).13

Prior to analysis, 3 preprocessing steps were performed. First,

data were brain-extracted, using optiBET,14 to remove from the

images extraneous nonbrain tissue (eg, eyes, neck, skull). Sec-

ond, subcortical structures of interest were segmented, on an

individual basis, and reconstructed into 3-dimensional vertex

meshes (as implemented in FSL FIRST).12 The segmentation is

achieved by incorporating, in a Bayesian framework, individual

subject MR image intensities and a set of priors for each target

region derived from manual labeling in a set of 336 T1-

weighted MR images. In addition, as part of this process, all

data are registered, using a 12 degrees of freedom method, to

the nonlinear Montreal Neurological Institute template (1 3 1

3 1mm resolution), which retains point correspondence

between meshes.12 Segmentation and mesh construction were

performed on all of the following brain regions, separately for

each hemisphere: thalamus, caudate nucleus, putamen, globus

pallidus, hippocampus, and brainstem (see Fig 1 for an example

segmentation and mesh reconstruction). In addition, although

not included in the FSL suite, we manually built a segmenta-

tion template of the basal forebrain, starting from the probabil-

istic map made available in the International Consortium for

Brain Mapping atlas.15 As confirmed visually on the basis of

the Atlas of Regional Anatomy of the Brain Using MRI16 and

the 7.0 Tesla MRI Brain Atlas17 (cf pages 83–95 of the latter),

the basal forebrain map was mainly centered around the sub-

stantia innominata (and thereby the nucleus basalis), as well as

the ventral aspect of the septal nucleus, but also overlapped to

some extent with the ventral pallidum (ie, the region of the

globus pallidus that extends ventrally to the anterior commis-

sure) and the most ventrocaudal segment of the nucleus accum-

bens. This region was added to the analysis because of its causal

role in the maintenance of cortical (and behavioral) arousal in

animal models.18

Upon completion of this preprocessing step, each partici-

pant’s segmentations were visually inspected. For 28 patients

(13 from Cambridge and 15 from Liège) the segmentation was

FIGURE 1: Methods. Sample structure extraction (left) and 3-dimensional triangle vertex mesh (right). A 5 anterior;
BrStem 5 brainstem; Caud 5 caudate; GP 5 globus pallidus; Hipp 5 hippocampus; L 5 left; P 5 posterior; Putm 5 putamen;
R 5 right; Thal 5 thalamus.
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unsuccessful in 1 or more structures, resulting in the exclusion

of their data set from the analysis. (We stress that this step took

place before any analysis was performed, thus blind to the con-

tribution of each of the 28 excluded observations to the analy-

sis.) Segmentation failure was due to low image quality

primarily resulting from in-scanner motion (n 5 26), and low

signal-to-noise ratio presumably due to MR equipment mal-

function (n 5 2). As a last preprocessing step, to account for

the effect of head size variability across individuals, we calcu-

lated each subject’s total normalized brain volume using SIE-

NAX19 and included this measure as a covariate in all analyses.

Statistical Analysis
Following preprocessing, the 3-dimensional meshes were

entered into 4 separate group analyses. First, to get an overview

of the average degree of tissue damage resulting from severe

brain injury, we compared healthy volunteers and patients (col-

lapsing across diagnosis; henceforth, analysis #1). Second, we

assessed the relationship between total CRS-R score and local

atrophy (analysis #2). As part of this analysis, we also assessed

atrophy differences relating to injury etiology (ie, traumatic vs

nontraumatic). Finally, we assessed the relationship between

local shape atrophy and CRS-R subscales (ie, auditory function,

visual function, motor function, oromotor–verbal, communica-

tion, and arousal; analysis #3). However, because of the correla-

tions between CRS-R subscales, and the negative effects of

excessive multicollinearity on regression analysis,20 we per-

formed a data reduction (principal component analysis [PCA],

with varimax rotation of the loading matrix21) over the CRS-R

subscales. The PCA returned 4 components, which collectively

explained 90% of the total variance. The first component

mainly captured the communication and motor function scales

(henceforth, Motor–Communication component), the second

component mainly isolated auditory and visual scales (Audiovi-

sual component), the third component isolated the arousal scale

(Arousal component), and the last component captured the

oromotor–verbal scale (Oromotor–Verbal component).

Finally, in a fourth analysis, we investigated differences

between clinical groups comparing VS patients to MCS2,

MCS1, and eMCS patients, as well as MCS2 to MCS1

patients (analysis #4).

In the first analysis (ie, healthy volunteers vs patients),

age, gender, and normalized brain volume were entered in the

regression as covariates. In all remaining analyses (ie, all

patient-only analyses), time since injury, etiology, and center

(ie, Liège, Cambridge) were additionally included as covariates.

Significance was established with nonparametric permutation

testing against an a-criterion of 0.05 corrected for multiple

comparisons using a familywise cluster correction using FSL

Randomise module.22,23

Results

Compared to healthy volunteers (ie, analysis #1), patients

exhibited significant atrophy across all examined regions.

As depicted in Figure 2 (and Supplementary

Video), extensive atrophy was detected in globus pallidus

(100% and 99% of vertices in the right and left meshes,

respectively), putamen (96% and 94% of vertices), hip-

pocampus (93% and 95% of vertices), thalamus (97%

and 88% of vertices). Extensive atrophy, albeit in fewer

vertices, was also detected in the caudate nucleus (80%

and 82% of vertices in the right and left meshes, respec-

tively), brainstem (73% of vertices), and basal forebrain

(53% and 55% of vertices). Within these regions, peaks

FIGURE 2: Analysis #1: volunteers versus patients. Colored regions indicate areas of significant atrophy in patients (t statistic),
collapsing across diagnoses, as compared to healthy volunteers (warmer colors indicate greater atrophy). Gray areas indicate
no significant atrophy. Renderings are in neurological convention. See also Supplementary Video. A 5 anterior; L 5 left;
P 5 posterior; R 5 right.
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of maximal atrophy occurred in bilateral anterodorsal

thalami, anterior dorsomedial caudate nuclei, and ante-

rior hippocampus.

As shown in Figure 3A, the CRS-R total score (analy-

sis #2) correlated inversely with atrophy in large portions

of the left globus pallidus (76% of vertices), left putamen

(85% of vertices), and small sections of the bilateral ven-

tromedial basal forebrain (8% and 2% of right and left

vertices, respectively; Fig 4C). In addition, after having fac-

tored out the total clinical score (as well as all the covari-

ates described in the Subjects and Methods section),

nontraumatic injury was still associated with increased

atrophy within the lateral and medial sections of left thala-

mus (56% of vertices), as well as a very small section of the

left basal forebrain (1% of vertices), as compared to trau-

matic brain injury (see Fig 3B). When we followed up this

result with a comparison within nontraumatic brain injury

patients (ie, anoxic/hypoxic versus cardiovascular etiolo-

gies), no significant differences were observed.

When assessing the individual PCA components

derived over the CRS-R subscores (analysis #3), the

Motor–Communication component scores exhibited a

significant negative correlation with the degree of atro-

phy in bilateral anterior and dorsomedial thalamus (61%

and 27% of vertices in the left and right hemisphere,

respectively), small segments of left putamen (36% of

vertices), and right medial and posterolateral hippocam-

pus (25% of vertices; see Fig 3C). The Arousal compo-

nent was negatively associated with extensive atrophy in

bilateral putamen (69% and 63% in left and right hemi-

sphere, respectively), globus pallidus (92% and 16% of

vertices), and a small segment of left posterior hippo-

campus (3% of vertices; see Fig 3D). The Audiovisual

component was negatively associated with the degree of

atrophy in small bilateral ventromedial segments of the

basal forebrain (3% and 5% of vertices in the left and

right hemisphere, respectively; see Fig 4D). No signifi-

cant associations were observed between the Oromotor–

FIGURE 3: Analyses #2, #3, and #4. (A) Regions (negatively) correlating with total Coma Recovery Scale–Revised (CRS-R) score.
(B) Regions of greater atrophy in patients suffering from nontraumatic brain injury, as compared to patients with traumatic
brain injury. (C) Regions (negatively) correlating with the communication–motor subscale component. (D) Regions (negatively)
correlating with the arousal subscale component. (E) Regions of greater atrophy in vegetative state (VS) patients as compared
to emerging from minimally conscious state (eMCS) patients. Gray areas indicate no significant atrophy.
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Verbal component and local shape change in any of the

target regions.

Finally, comparison across patient groups (analysis

#4) resulted in very few observable differences. No signifi-

cant differences were detected in the comparison of VS

versus MCS2 patients, VS versus MCS1 patients, and

MCS2 versus MCS1 patients. The only significant differ-

ence across clinical entities was observed when comparing

the extremes of the DOC spectrum, VS and eMCS

patients (see Fig 3E). Consistent with the result reported

for total CRS-R, VS patients exhibited, as compared to

eMCS, significant atrophy in left putamen (85% of verti-

ces) and globus pallidus (69% of vertices), as well as in

small sections in medial and anterior right hippocampus

(6% of vertices). This result was obtained with fewer

observations (ie, 38 vs 14) than those available for the

remaining group comparisons, thus suggesting that the

null results we reported when comparing VS to MCS1/2

patients (which parallel a previous small sample study8)

might not just be a consequence of low power. (No verti-

ces appeared significant in the reverse of any of the above

comparisons; eg, in no region did patients exhibit expan-

sion as compared to healthy volunteers, or positive correla-

tions with any of the continuous variables.)

Discussion

In this study, we have reported 3 main findings. First, we

have shown, for the first time and in the largest sample

to date, that DOC patients exhibit extensive atrophy

across a number of subcortical structures including

regions known to be involved in the regulation of elec-

trocortical arousal, sleep–wake rhythms, and conscious

behavior.24–27 Second, we have shown that the graded

clinical measures upon which diagnostic stratification rely

(ie, the CRS-R subscales) reflect systematic “minimum

common” brain pathology, as detected with MRI, in rela-

tion to specific aspects of consciousness (as clinically

defined).28 On the one hand, the negative association

between motor/communication scores and atrophy along

the anterior and dorsomedial regions of thalamus is con-

sistent with the mesocircuit theory according to which

corticopetal projections from thalamus to prefrontal cor-

tex are crucial for sustaining organized behavior26 and

integrating information across different regions of cor-

tex.29 These regions are known to be a target of second-

ary, nonmechanic, damage (eg, Wallerian degeneration)

in acute moderate-to-severe brain injury, with the degree

of atrophy correlating with long-term outcome.10 Fur-

thermore, the dorsomedial aspect of thalamus is known

to be the main subcortical structure projecting to pre-

frontal cortex,30 and to play a key role in the regulation

of higher cognitive functions in DOC patients.31 Stimu-

lation of neurons in this area has been shown to lead to

increased responsiveness in some MCS patients.27 On

the other hand, our data show that arousal—as measured

by the CRS-R—is inversely correlated with the degree of

atrophy in bilateral basal ganglia. This aspect of our find-

ing is in keeping with a growing literature suggesting

that the basal ganglia serve a critical role in the mainte-

nance of behavioral and electrocortical arousal, as well as

wakefulness (as supported by the many arousal and

sleep/wake components in striatal dysfunction syn-

dromes).24,25,32–34 Lesions to the dorsal striatum have

been shown in animal models to result in a reduction in

total wake, wake fragmentation, and greater power in the

electroencephalographic (EEG) d band (0.5–4Hz), the

latter of which is observed across behavioral states,33 and

matches a pattern that is often observed in DOC

patients.35 Furthermore, computational models have

recently shown that, under conditions of decreased c-

aminobutyric acidergic (GABAergic) input from the

striatum to the globus pallidus pars externa (a circuit

that our data suggest is pathological in DOC patients, at

the globus pallidus end), oscillations in the b frequency

(15–30Hz) emerge spontaneously,36 which is another fea-

ture of DOC pathophysiology.35 More surprising is the

absence of association between patients’ level of arousal

and thalamic atrophy. Thalamic intralaminar and midline

nuclei are traditionally considered to be a key element of

the ascending reticular system, crucial for electrocortical

and behavioral arousal.37 Nonetheless, in animal models,

FIGURE 4: Basal forebrain. (A) Basal forebrain standard
region of interest (ROI) overlaid on top of a standard high-
resolution healthy brain. (B) Results for the healthy volun-
teers versus patients comparison (analysis #1). (C) Basal
forebrain subregions (negatively) correlating with total
Coma Recovery Scale–Revised (CRS-R) (analysis #2). (D)
Basal forebrain subregions (negatively) correlating with
Audiovisual subscales component (analysis #3). Note that
the t statistic color schema for analysis #1 ranges from 0 to
12, whereas for analysis #2 and #3 it ranges from 0 to 2.8.
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complete cell-body–specific lesions in thalamus that spare

fibers of passage (as well as cell-body–specific lesions in

the globus pallidus pars interna, another nucleus consid-

ered to be part of the mesocircuit underlying disorders of

consciousness35) have been shown to produce little effect

on behavioral measures of wakefulness, EEG rhythms in

frontoparietal regions, and activation of cortical neurons

during wakefulness and stimulation,18,38,39 even when

specifically focused on the intralaminar nuclei.40 Con-

versely, cell-body–specific lesions within the basal ganglia

(eg, caudate and putamen, globus pallidus pars externa)

have each been shown to cause a slowing of the EEG

toward greater d and lower h density, despite an intact

thalamus.33 Although it should be recognized that

important differences might exist between the examined

animal models and the human brain, our findings are

consistent with the above literature and do support the

view that “while thalamus might be crucial for transmit-

ting specific information that provides the content of the

waking state, and may therefore contribute to overall

arousal if thalamic input demands attention, it might

itself be neither necessary nor sufficient to produce wake-

fulness.”18 At a circuit level, the implication of our find-

ings is that, at least in the context of DOC, different

aspects of consciousness, including willful behavior and

arousal, might be mediated by thalamic and extrathala-

mic mechanisms, respectively. On the one hand, a corti-

costriatopallido(internal)–thalamocortical mesocircuit

might be crucial for maintaining large-scale, organized,

willful behavior.7,26 On the other hand, electrocortical

and behavioral arousal might be principally sustained by

extrathalamic circuits including a corticostriatopallido(ex-

ternal)–cortical circuit,24,25,33,34,41–43 which would

directly explain our findings, as well as the (glutamater-

gic) innervations emanating from the parabrachial/pre-

coeruleus complex, which has been previously shown to

be crucial for this process (but could not be assessed with

the present technique).18,44 In addition, we also found

that the basal forebrain was (negatively) associated with

the degree of sensory responsiveness of patients. This

region is well known to play a causal role in the mainte-

nance of behavioral and electrocortical arousal, and to

induce a comalike state when extensively lesioned.18

Nonetheless, the basal forebrain has also been shown to

be important for fast cortical modulation aimed at transi-

ently amplifying cortical activity and the processing of

sensory stimuli (putatively via the inhibitory action of

basal forebrain GABAergic projections on inhibitory cort-

ical interneurons).45–48 One might therefore speculate

that the degree of atrophy we observed in this region

(�50% of the region of interest, as compared to healthy

volunteers) might not have been sufficient to induce the

comalike state seen in animal models upon complete

lesion of this region,18 but might nonetheless have been

sufficient to affect the mechanisms of fast cortical disin-

hibition. Future studies will have to address this possibil-

ity, as well as the exact relationship between the acute

brainstem and basal forebrain comalike state observed in

animal models,18,44 acute brainstem coma in humans,49

and chronic disorders of consciousness where some level

of spontaneous arousal is recovered, in the absence of

(self-)awareness.

Third, paralleling postmortem examinations,50 we

have also shown in vivo that patients suffering from non-

traumatic brain injury exhibit a more widespread and

left-lateralized degree of thalamic atrophy, consistent with

the well-known poorer prognosis associated with non-

traumatic etiology.1 We note that the left lateralization of

the additional atrophy does not appear to be a trivial

consequence of greater prevalence of left-lateralized inju-

ries in our sample, which according to the clinical notes

were mostly bilateral (84% vs 9.6% and 6% of left- and

right-lateralized injuries, respectively). The functional sig-

nificance of this lateralization remains to be evaluated.

Nonetheless, this finding further highlights the depend-

ence of clinical (and neuroimaging-based) assessments of

consciousness on residual linguistic processing, and the

necessity to develop non–language-based procedures for

eliciting willful (motor or neural) responses,51,52 as well

as non–response-dependent functional29,53,54 and struc-

tural8–10 biomarkers of consciousness. On a similar note,

it is important to stress that this work has exclusively

focused on the clinical interpretation of the cardinal ele-

ments of consciousness (ie, presence of nonreflexive

responsiveness and eye opening),3,4,55 and did not

address the more ephemeral subjective/phenomenological

aspect of human consciousness.

In conclusion, our data differentiate the link

between thalamic damage and goal-directed, willful

behavior6 on the one hand, and extrathalamic damage

and behavioral (and cortical) arousal on the other. It is

noteworthy, however, that diagnostic groups (eg, VS,

MCS) do not appear to be readily distinguishable in

terms of subcortical structural pathology, presumably due

to extensive within-category variance. These findings

reframe our current understanding of the brain pathology

underlying loss and recovery of consciousness, and pro-

vide, for the first time, a direct link between behaviorally

based clinical measures of consciousness and “minimum

common” localized brain injury, thereby also informing

our search for restorative therapeutic interventions.

Finally, interpretation of our findings should be

mindful of a number of limitations. First, our measure

of atrophy is actually a measure of local tissue
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displacement, and is therefore unable to differentiate the

contribution of different cell populations within the

regions we assessed to the overall effect. Furthermore, the

use of structural neuroimaging, a descriptive methodol-

ogy, to pinpoint neuroanatomical components of con-

sciousness, as measured with standard clinical methods,

does not allow a causal interpretation of our findings.

Second, the atlas-based component of our approach is

both an asset, allowing improved estimation and segmen-

tation of individual regions, and a liability, given its reli-

ance on priors estimated mostly from healthy volunteers.

Third, it should also be noted that our proposal, as well

as the mesocircuit model of DOC,7 are to be understood

as approximations that do not take into full account the

extent of corticosubcortical connectivity, its temporal

dynamics,56 the multiple mechanisms of action of neuro-

transmitters, and a number of additional regions known

to be important for the regulation of arousal and cortical

function.34 Finally, we also note that we have focused on

the idea of a “minimum common denominator” across a

heterogeneous sample of patients, employing a multiple

regression approach to control for a number of factors

that are known to be important sources of variability in

DOC. Nonetheless, it must be recognized that there are

a number of additional factors that might well play an

important role in determining the specific pattern of

atrophy observed in a given patient that we could not

address (eg, whether pharmacologic coma was used, the

presence of status epilepticus, the potential of some

patients undergoing steroid administration) and that will

likely require even larger samples than the present one to

allow full statistical evaluation.

Acknowledgment

This study was supported by the James S. McDonnell

Foundation “Scholar Award” (M.M.M.), the Medical

Research Council UK (U.1055.01.002.00007.01,

U.1055.01.002.00001.01; A.M.O.), a UK National

Institute for Health Research Senior Investigator Award

(J.D.P.), the Belgian National Funds for Scientific

Research (FRS-FNRS; S.L.), the European Commission

ICT Program Project FP7–247919 (A.M.O., S.L.), and

the Canada Excellence Research Chairs Program

(A.M.O.).

Authorship

M.M.M. conceived the study. M.M.M., E.K., L.T., and

M.K., acquired the data. E.S.L. and J.C. performed

imaging preprocessing. E.S.L. conducted the data analy-

sis. M.M.M. and E.S.L. interpreted the data. M.M.M.

and E.S.L. drafted the manuscript. All authors were

involved in subsequent revisions. M.M.M., A.M.O.,

S.L., and J.D.P. secured the funding.

Potential Conflicts of Interest

Nothing to report.

References
1. Monti MM, Laureys S, Owen AM. The vegetative state. BMJ 2010;

341:c3765.

2. Jennett B. Thirty years of the vegetative state: clinical, ethical and
legal problems. Prog Brain Res 2005;150:537–543.

3. Giacino JT, Ashwal S, Childs N, et al. The minimally conscious
state: definition and diagnostic criteria. Neurology 2002;58:349–
353.

4. Giacino JT, Kalmar K, Whyte J. The JFK Coma Recovery Scale-
Revised: measurement characteristics and diagnostic utility. Arch
Phys Med Rehabil 2004;85:2020–2029.

5. Multi-Society Task Force on PVS. Medical aspects of the persistent
vegetative state (1). N Engl J Med 1994;330:1499–1508.

6. Schiff ND. Central thalamic contributions to arousal regulation and
neurological disorders of consciousness. Ann N Y Acad Sci 2008;
1129:105–118.

7. Schiff ND. Recovery of consciousness after brain injury: a mesocir-
cuit hypothesis. Trends Neurosci 2010;33:1–9.

8. Fern�andez-Espejo D, Junque C, Bernabeu M, et al. Reductions of
thalamic volume and regional shape changes in the vegetative
and the minimally conscious states. J Neurotrauma 2010;27:1187–
1193.

9. Fern�andez-Espejo D, Bekinschtein T, Monti MM, et al. Diffusion
weighted imaging distinguishes the vegetative state from the min-
imally conscious state. Neuroimage 2011;54:103–112.

10. Lutkenhoff ES, McArthur DL, Hua X, et al. Thalamic atrophy in
antero-medial and dorsal nuclei correlates with six-month out-
come after severe brain injury. Neuroimage Clin 2013;3:396–404.

11. Bruno MA, Vanhaudenhuyse A, Thibaut A, et al. From unrespon-
sive wakefulness to minimally conscious PLUS and functional
locked-in syndromes: recent advances in our understanding of dis-
orders of consciousness. J Neurol 2011;258:1373–1384.

12. Patenaude B, Smith SM, Kennedy DN, Jenkinson M. A Bayesian
model of shape and appearance for subcortical brain segmenta-
tion. Neuroimage 2011;56:907–922.

13. Smith SM, Jenkinson M, Woolrich MW, et al. Advances in func-
tional and structural MR image analysis and implementation as
FSL. Neuroimage 2004;23(suppl 1):S208–S219.

14. Lutkenhoff ES, Rosenberg M, Chiang J, et al. Optimized brain
extraction for pathological brains (optiBET). PloS One 2014;9:
e115551.

15. Mazziotta J, Toga A, Evans A, et al. A probabilistic atlas and refer-
ence system for the human brain: International Consortium for
Brain Mapping (ICBM). Philos Trans R Soc Lond B Biol Sci 2001;
356:1293–1322.

16. Tamraz JC, Comair YG, Tamraz J. Atlas of regional anatomy of
the brain using MRI. New York, NY: Springer, 2004.

17. Cho Z-H. 7.0 Tesla MRI brain atlas: in vivo atlas with cryomacro-
tome correlation. New York, NY: Springer, 2010.

18. Fuller PM, Sherman D, Pedersen NP, et al. Reassessment of the
structural basis of the ascending arousal system. J Comp Neurol
2011;519:933–956.

Lutkenhoff et al: Brain Injury and Consciousness

July 2015 75



19. Smith SM, Zhang Y, Jenkinson M, et al. Accurate, robust, and
automated longitudinal and cross-sectional brain change analysis.
Neuroimage 2002;17:479–489.

20. Monti MM. Statistical analysis of fMRI time-series: a critical review
of the GLM approach. Front Hum Neurosci 2011;5:28.

21. Kaiser HF. The varimax criterion for analytic rotation in factor-anal-
ysis. Psychometrika 1958;23:187–200.

22. Smith SM, Nichols TE. Threshold-free cluster enhancement:
addressing problems of smoothing, threshold dependence and
localisation in cluster inference. Neuroimage 2009;44:83–98.

23. Winkler AM, Ridgway GR, Webster MA, et al. Permutation infer-
ence for the general linear model. Neuroimage 2014;92:381–397.

24. Lazarus M, Chen JF, Urade Y, Huang ZL. Role of the basal ganglia
in the control of sleep and wakefulness. Curr Opin Neurobiol
2013;23:780–785.

25. Lazarus M, Huang Z-L, Lu J, et al. How do the basal ganglia regu-
late sleep–wake behavior? Trends Neurosci 2012;35:723–732.

26. Schiff ND. Central thalamic contributions to arousal regulation
and neurological disorders of consciousness. Ann N Y Acad Sci
2008;1129:105–118.

27. Schiff ND, Giacino JT, Kalmar K, et al. Behavioural improvements
with thalamic stimulation after severe traumatic brain injury.
Nature 2007;448:600–603.

28. Laureys S. The neural correlate of (un)awareness: lessons from the
vegetative state. Trends Cogn Sci 2005;9:556–559.

29. Monti MM, Lutkenhoff ES, Rubinov M, et al. Dynamic change of
global and local information processing in propofol-induced loss
and recovery of consciousness. PLoS Comput Biol 2013;9:
e1003271.

30. Klein JC, Rushworth MF, Behrens TE, et al. Topography of con-
nections between human prefrontal cortex and mediodorsal thala-
mus studied with diffusion tractography. Neuroimage 2010;51:
555–564.

31. Monti MM, Rosenberg M, Finoia P, et al. Thalamo-frontal connec-
tivity mediates top-down cognitive functions in disorders of con-
sciousness. Neurology 2015;84:167–173.

32. Magill PJ, Bolam JP, Bevan MD. Relationship of activity in the
subthalamic nucleus-globus pallidus network to cortical electroen-
cephalogram. J Neurosci 2000;20:820–833.

33. Qiu MH, Vetrivelan R, Fuller PM, Lu J. Basal ganglia control of
sleep-wake behavior and cortical activation. Eur J Neurosci 2010;
31:499–507.

34. Vetrivelan R, Qiu MH, Chang C, Lu J. Role of basal ganglia in
sleep-wake regulation: neural circuitry and clinical significance.
Front Neuroanat 2010;4:145.

35. Schiff ND, Nauvel T, Victor JD. Large-scale brain dynamics in dis-
orders of consciousness. Curr Opin Neurobiol 2014;25:7–14.

36. Holgado AJ, Terry JR, Bogacz R. Conditions for the generation of
beta oscillations in the subthalamic nucleus-globus pallidus net-
work. J Neurosci 2010;30:12340–12352.

37. Van der Werf YD, Witter MP, Groenewegen HJ. The intralaminar
and midline nuclei of the thalamus. Anatomical and functional evi-
dence for participation in processes of arousal and awareness.
Brain Res Brain Res Rev 2002;39:107–140.

38. Pritzel M, Markowitsch HJ. Kainic acid lesions in the cat’s thala-
mus: morphological and behavioral changes. Brain Res Bull 1980;
5:61–67.

39. Vanderwolf CH, Stewart DJ. Thalamic control of neocortical activa-
tion: a critical re-evaluation. Brain Res Bull 1988;20:529–538.

40. Constantinople CM, Bruno RM. Effects and mechanisms of wake-
fulness on local cortical networks. Neuron 2011;69:1061–1068.

41. Gritti I, Mainville L, Mancia M, Jones BE. GABAergic and other
noncholinergic basal forebrain neurons, together with cholinergic
neurons, project to the mesocortex and isocortex in the rat.
J Comp Neurol 1997;383:163–177.

42. Qiu MH, Chen MC, Huang ZL, Lu J. Neuronal activity (c-Fos)
delineating interactions of the cerebral cortex and basal ganglia.
Front Neuroanat 2014;8:13.

43. Gritti I, Manns ID, Mainville L, Jones BE. Parvalbumin, calbindin,
or calretinin in cortically projecting and GABAergic, cholinergic, or
glutamatergic basal forebrain neurons of the rat. J Comp Neurol
2003;458:11–31.

44. Kaur S, Pedersen NP, Yokota S, et al. Glutamatergic signaling
from the parabrachial nucleus plays a critical role in hypercapnic
arousal. J Neurosci 2013;33:7627–7640.

45. Avila I, Lin S-C. Motivational salience signal in the basal forebrain
is coupled with faster and more precise decision speed. PLoS Biol
2014;12:e1001811.

46. Lin S-C, Gervasoni D, Nicolelis MA. Fast modulation of prefrontal
cortex activity by basal forebrain noncholinergic neuronal ensem-
bles. J Neurophysiol 2006;96:3209–3219.

47. Goard M, Dan Y. Basal forebrain activation enhances cortical cod-
ing of natural scenes. Nat Neurosci 2009;12:1444–1449.

48. Nguyen DP, Lin S-C. A frontal cortex event-related potential
driven by the basal forebrain. Elife 2014;3:e02148.

49. Parvizi J, Damasio AR. Neuroanatomical correlates of brainstem
coma. Brain 2003;126:1524–1536.

50. Adams JH, Graham DI, Jennett B. The neuropathology of the
vegetative state after an acute brain insult. Brain 2000;123(pt 7):
1327–1338.

51. Bekinschtein TA, Shalom DE, Forcato C, et al. Classical condition-
ing in the vegetative and minimally conscious state. Nat Neurosci
2009;12:1343–1349.

52. Bekinschtein TA, Dehaene S, Rohaut B, et al. Neural signature of
the conscious processing of auditory regularities. Proc Natl Acad
Sci U S A 2009;106:1672–1677.

53. Crone JS, Schurz M, H€oller Y, et al. Impaired consciousness is
linked to changes in effective connectivity of the posterior cingu-
late cortex within the default mode network. Neuroimage 2015;
110:9.

54. Chennu S, Finoia P, Kamau E, et al. Spectral signatures of reor-
ganised brain networks in disorders of consciousness. PLoS Com-
put Biol 2014;10:e1003887.

55. Monti MM, Owen AM. Behavior in the brain using functional neu-
roimaging to assess residual cognition and awareness after severe
brain injury. J Psychophysiol 2010;24:76–82.

56. Jaeger D, Kita H. Functional connectivity and integrative proper-
ties of globus pallidus neurons. Neuroscience 2011;198:44–53.

ANNALS of Neurology

76 Volume 78, No. 1


